Study on the Manufacturing of Ultra-Fine Ore Briquettes for Charging in a Sintering Machine

Author:

Bae Jong-Ho,Kim Kang-Min,Lee Kyeong-Uk,Han Jeong-Whan

Abstract

In ironmaking, the optimal size of the iron ore charged into a blast furnace is generally 10-30 mm. Oversized ores, which have a smaller reaction surface area, are crushed, while undersized ores, which decrease permeability, undergo a sizing process before being charged into the blast furnace. Recently, however, iron ore has been micronized, and there is less high-quality iron ore. Also, in accordance with the Paris climate change accord, the Republic of Korea must reduce CO2 gas emissions by about 39% before 2030 to conserve the environment. In response, steelmakers have researched a sinter-briquette complex firing process which employs a method of charging where the raw materials are sintered together with briquettes made of ultra-fine ore. Extra heat is needed to sinter the briquettes. If the briquettes are broken during transporting and charging, the sinter bed permeability decreases, which decreases productivity. In this study, briquettes were made by changing manufacturing conditions such as moisture content, feeding speed, and size, and were simulated by changing the pocket depth in a numerical analysis. Consequently, it was determined that the compressive strength of the briquette was highest when moisture in the briquette was 6 wt%, in proportion to feeding speed and large particle size. Briquette density was in inverse proportion to pocket depth, and when the depth was over 15 mm, the briquette was broken in the pocket.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3