Advances in Atomic Force Microscopy for the Electromechanical Characterization of Piezoelectric and Ferroelectric Nanomaterials

Author:

Kim Kwanlae

Abstract

Given the social demand for self-powering wearable electronics, it is necessary to develop composite materials that exhibit both good flexibility and excellent piezoelectric performances. Intensive research on synthesis methods and devising characterization techniques for piezoelectric nanomaterials in various forms has been conducted. In particular, characterization techniques for piezoelectric nanomaterials require different approaches from those for conventional bulk materials. Atomic force microscopy (AFM)-based characterization techniques work based on the local physical interactions between the AFM tip and sample surfaces, making them an irreplaceable tool for studying the electromechanical properties of piezoelectric nanomaterials. Piezoresponse force microscopy (PFM), conductive AFM (C-AFM), and lateral force microscopy (LFM) are three representative AFM-based techniques used to characterize the piezoelectric and ferroelectric properties of nanomaterials. Coupled with the appearance of diverse novel nanomaterials such nanowires, free-standing nanorods, and electrospun nanofibers, AFM-based characterization techniques are becoming freer from artifacts and the need for quantitative measurements. PFM was initially developed to image the microstructures of piezoelectric materials, and well-calibrated techniques designed to realize quantitative measurements have been applied to nanomaterials. In contrast, C-AFM and LFM were initially used to measure the conductivity of diverse materials and the nanotribology of material surfaces. Over the last decade, they have proved their versatility and can now be used to evaluate the direct piezoelectric effect and the mechanical properties of piezoelectric nanomaterials. In these cases, systematic understanding with regard to the measurement principles is required for accurate measurements and analyses. In the present review article, we discuss earlier work in which AFM-based electromechanical characterization techniques were applied to nanomaterials to evaluate piezoelectric and ferroelectric properties. Also discussed is the importance of gaining a comprehensive understanding of the resulting signals.

Funder

National Research Foundation of Korea

Ministry of Science and ICT

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3