Improved Thermoelectric Performance of Cu3Sb1−x−ySnxInySe4 Permingeatites Double-Doped with Sn and In

Author:

Kim Ho-Jeong,Kim Il-Ho

Abstract

Cu–Sb–Se ternary chalcogenide compounds composed of earth-abundant low-toxicity elements are attracting attention as economical and ecofriendly semiconductors. Among them, permingeatite (Cu3SbSe4) is a potential thermoelectric material with high Seebeck coefficient and low lattice thermal conductivity. However, it is necessary to improve its thermoelectric properties through doping, as it has low electrical conductivity due to its low intrinsic carrier concentration. In this study, samples of Cu3Sb1−x−ySnxInySe4 (0.02 ≤ <i>x</i> ≤ 0.08 and 0.04 ≤ <i>y</i> ≤ 0.06) double-doped with In (group 13 element) and Sn (group 14 element) at the Sb (group 15 element) sites of permingeatite were synthesized and their thermoelectric performances were evaluated. All samples exhibited a single phase of permingeatite with tetragonal structure, and high relative densities of 97.4–98.9%. The lattice constants of the a- and c-axes were 0.5651–0.5654 and 1.1249–1.1257 nm, respectively, owing to the successful substitution of Sn and In at the Sb sites. As the doping concentrations of Sn and In increased, the carrier (hole) concentration increased. Thus, the Seebeck coefficient decreased, while the electrical and thermal conductivities increased. Sn doping was found to be more effective than In doping. Because Cu3Sb0.96−xSnxIn0.04Se4 exhibits higher Seebeck coefficients than Cu3Sb0.94−xSnxIn0.06Se4, larger power factors and higher dimensionless figures of merit (ZTs) were achieved for the Cu3Sb0.96−xSnxIn0.04Se4 specimens. Cu3Sb0.92Sn0.04In0.04Se4 achieved a maximum ZT of 0.59 at 623 K, based on its Seebeck coefficient of 161 µVK<sup>−1</sup>, electrical conductivity of 4.69 × 10<sup>4</sup> Sm<sup>−1</sup>, thermal conductivity of 0.77 Wm<sup>−1</sup>K<sup>−1</sup>, and power factor of 1.22 mWm<sup>−1</sup>K<sup>−2</sup>.

Funder

Ministry of Education

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3