Effect of Post-Weld Heat Treatment on Microstructure and Hardness Evolution of Functionally Graded Materials Produced by Direct Energy Deposition

Author:

Shin Giseung,Park Yongho,Kim Dae Whan,Yoon Ji hyun,Kim Jeoung Han

Abstract

In this work, the effects of post weld heat treatment (PWHT) on the microstructure and mechanical properties of functionally gradient materials (FGM) was investigated. The FGM consisted of five different layers which were mixtures of austenitic stainless steel (type 316L) and ferritic steel (LAS). The ratio of type 316L and LAS powder in each deposition layer was 100:0, 75:25, 50:50, 25:75, and 0:100. FGM samples were successfully fabricated without cracks or delamination by a direct energy deposition process. The sensitization phenomenon of the FGM samples was investigated after PWHT. The PWHTs were conducted at 700<sup>o</sup>C, 900<sup>o</sup>C, and 1100<sup>o</sup>C for 4 hours and the samples were then air-cooled. After PWHT, the annealed specimens were observed by optical and scanning electron microscopy to analyze their microstructure. The occurrence of sensitization was found in the specimen annealed at 700<sup>o</sup>C. The contents of Cr and C increased substantially along grain boundaries. However, the sensitization did not occur in other samples annealed at 900<sup>o</sup>C and 1100<sup>o</sup>C. In the C and D layers of the 1100<sup>o</sup>C annealed sample, micro-hardness was measured to be very high due to the formation of bainitic ferrite and a lath martensite structure. In addition, a reduction of the austenite fraction was confirmed by Electron Back Scatter Diffraction.

Funder

Ministry of Science and ICT

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

Reference45 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3