Synthesis of Three-Dimensionally Interconnected Hexagonal Boron Nitride Networked Cu-Ni Composite

Author:

Hussain Zahid,Yang Hye-Won,Choi Byung-Sang

Abstract

A three-dimensionally interconnected hexagonal boron nitride (3Di-hBN) networked Cu-Ni (3DihBN-Cu-Ni) composite was successfully synthesized in situ using a simple two-step process which involved the compaction of mixed Cu-Ni powders (70 wt.% Cu and 30 wt.% Ni) into a disc followed by metal-organic chemical vapor deposition (MOCVD) at 1000 <sup>o</sup>C. During MOCVD, the Cu-Ni alloy grains acted as a template for the growth of hexagonal boron nitride (hBN) while decaborane and ammonia were used as precursors for boron and nitrogen, respectively. Boron and nitrogen atoms diffused into the Cu-Ni solution during the MOCVD process and precipitated out along the Cu-Ni interfaces upon cooling, resulting in the formation of the 3Di hBN-Cu-Ni composite. Energy-dispersive spectroscopic analysis confirmed the presence of boron and nitrogen atoms at the interfaces of Cu-Ni alloy grains. Optical microscopy examination indicated that there was a minimum amount of bulk hBN at a certain compaction pressure (280 MPa) and sintering time (30 min). Scanning electron microscopy and transmission electron microscopy revealed that an interconnected network of hBN layers surrounding the Cu-Ni grains developed in the 3Di-hBN-Cu-Ni composite. This 3Di-hBN network is expected to enhance the mechanical, thermal, and chemical properties of the 3Di-hBN-Cu-Ni composite. Moreover, the foam-like 3Di-hBN extracted from 3Di-hBN-Cu-Ni composite could have further applications in the fields of biomedicine and energy storage.

Funder

Chosun University

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3