High-throughput Screening Computation for Discovery of Porous Zeolites for Hydrogen Storage

Author:

Yeo Byung Chul

Abstract

Hydrogen is considered an attractive energy resource because it is eco-friendly in contrast with fossil fuels. Hydrogen storage remains as essential technology for increasing the use of the hydrogen in applications such as hydrogen vehicles and fuel cells. Hydrogen storage requires retaining a high density of hydrogen molecules at ambient temperature in a suitable tank. Zeolites are one of the promising hydrogen storage materials, but experimentally investigating them for hydrogen storage is difficult since the number of the zeolites in the largescale material database has been increasing. In the present study I developed an efficient method of exploring potential zeolites in the database that had high volumetric hydrogen storage capacity. To do this I employed a high-throughput screening approach to automatically construct a zeolite database for hydrogen storage in the Inorganic Crystal Structural Database (ICSD). Also, I performed grand canonical Monte Carlo (GCMC) simulations to estimate hydrogen adsorption isotherms at operating ambient temperatures, to determine the volumetric hydrogen storage capacity of the zeolites. Finally, I found 10 top ranked materials in the zeolite database for H2 storage, and I calculated Pearson’s correlation coefficient to revealed the linear correlations between the hydrogen storage capacities and 3 structural characteristics (i.e., surface area, largest cavity diameter, pore limiting diameter). Furthermore, I investigated atom species in the 10 materials to show the relation between the hydrogen storage capacities and chemical elements. In future works, I expect the method can be easily applied to accelerate the discovery and design of porous materials for storing CO2 or toxic gases.

Funder

Pukyong National University

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3