Fabrication of Ruthenium-Based Transition Metal Nanoparticles/Reduced Graphene Oxide Hybrid Electrocatalysts for Alkaline Water Splitting

Author:

Lee Eun Been,Jo Seung Geun,Kim Sang Jun,Park Gil-Ryeong,Lee Jung Woo

Abstract

Green hydrogen has attracted significant attention as one of the future energy sources because no greenhouse gases are emitted during production and its energy density is much higher than fossil fuels. Precious metals such as platinum (Pt) and iridium (Ir)-based catalysts are commonly used for water splitting catalysts. However, because of high cost of these precious metals, the mass production of green hydrogen is restricted. In this study, water splitting catalysts based on relatively inexpensive ruthenium (Ru), cobalt (Co), and iron (Fe) were synthesized. The metal nanoparticles were anchored on reduced graphene oxide (rGO) by a microwave-assisted process. The nanoparticles were uniformly distributed on the rGO supports with sizes of about 1.5 and 2 nm in Ru/rGO and RuCoFe/rGO, respectively. This promoted the reaction by further increasing the specific surface area of the catalysts. In addition, it was confirmed by EDS mapping results that the nanoparticles were made of RuCoFe alloy. Among the prepared catalysts, Ru/rGO was excellent toward the hydrogen evolution reaction (HER), which required an overpotential of 50 mV to reach a current density of −10 mA cm<sup>−2</sup>. In addition, RuCoFe/rGO, which contained the RuCoFe alloy, was the best for the oxygen evolution reaction (OER), and it required 362 mV at the current density of 10 mA cm<sup>−2</sup>.

Funder

Ministry of Science and ICT

Ministry of Trade, Industry and Energy

Korea Institute of Energy Technology Evaluation and Planning

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3