Microstructure and Wear Properties of Al 7075 Alloy Manufactured by Twin-Roll Strip Casting Process

Author:

Kim Kyoung-Wook,Baek Min-Seok,Euh Kwangjun,Lee Kee-Ahn

Abstract

Al 7075 alloy was manufactured using the twin-roll strip casting (TRC) process, and the mechanical and wear properties of the fabricated TRC process were investigated. To compare the properties of the alloy manufactured by TRC, another Al 7075 alloy was fabricated by conventional direct chill (DC) casting as a comparative material. Based on initial microstructure observations, the Al 7075 alloy manufactured by the DC process showed relatively elongated grains compared to the Al 7075 alloy by TRC process. In both alloys, η(MgZn2) phases were present at the grain and grain boundaries. In the Al 7075 alloy manufactured by the DC process, the η(MgZn2) phases were coarse with a size of ~86 nm and were mainly concentrated in the local area. However, the Al 7075 alloy manufactured by TRC had relatively fine η(MgZn2) phases size of ~40 nm, and they were evenly distributed throughout the matrix. When the mechanical properties of the two alloys were compared, the TRC process showed higher hardness and strength properties than the DC process. In room temperature wear test results, the TRC process exhibited lower weight loss and wear rates compared to the DC process at all wear loads. In other words, the TRC process resulted in relatively superior wear resistance properties compared to the conventional DC process. The wear behavior of both alloys changed from abrasive wear to adhesive wear as the wear load increased. However, the TRC process maintained abrasive wear up to higher loads. Based on the above results, a correlation between the microstructure and wear mechanism of the Al 7075 alloy manufactured by TRC is also suggested.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3