Author:
Kim Kyoung-Wook,Baek Min-Seok,Euh Kwangjun,Lee Kee-Ahn
Abstract
Al 7075 alloy was manufactured using the twin-roll strip casting (TRC) process, and the mechanical and wear properties of the fabricated TRC process were investigated. To compare the properties of the alloy manufactured by TRC, another Al 7075 alloy was fabricated by conventional direct chill (DC) casting as a comparative material. Based on initial microstructure observations, the Al 7075 alloy manufactured by the DC process showed relatively elongated grains compared to the Al 7075 alloy by TRC process. In both alloys, η(MgZn2) phases were present at the grain and grain boundaries. In the Al 7075 alloy manufactured by the DC process, the η(MgZn2) phases were coarse with a size of ~86 nm and were mainly concentrated in the local area. However, the Al 7075 alloy manufactured by TRC had relatively fine η(MgZn2) phases size of ~40 nm, and they were evenly distributed throughout the matrix. When the mechanical properties of the two alloys were compared, the TRC process showed higher hardness and strength properties than the DC process. In room temperature wear test results, the TRC process exhibited lower weight loss and wear rates compared to the DC process at all wear loads. In other words, the TRC process resulted in relatively superior wear resistance properties compared to the conventional DC process. The wear behavior of both alloys changed from abrasive wear to adhesive wear as the wear load increased. However, the TRC process maintained abrasive wear up to higher loads. Based on the above results, a correlation between the microstructure and wear mechanism of the Al 7075 alloy manufactured by TRC is also suggested.
Publisher
The Korean Institute of Metals and Materials
Subject
Metals and Alloys,Surfaces, Coatings and Films,Modelling and Simulation,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献