Formation of Surface-Wrinkled Metal Nanosheets via Thermally Assisted Nanotransfer Printing

Author:

Park Tae Wan,Park Woon Ik

Abstract

Nanopatterning methods for pattern formation of high-resolution nanostructures are essential for the fabrication of various electronic devices, including wearable displays, high-performance semiconductor devices, and smart biosensor systems. Among advanced nanopatterning methods, nanotransfer printing (nTP) has attracted considerable attention due to its process simplicity, low cost, and great pattern resolution. However, to diversify the pattern geometries for wide device applications, more effective and useful nTP based patterning methods must be developed. Here, we introduce a facile and practical nanofabrication method to obtain various three-dimensional (3D) ultra-thin metallic films via thermally assisted nTP (T-nTP). We show how to generate surface-wrinkled 3D nanostructures, such as angular line, concave-valley, and convex-hill structures. We also demonstrate the principle for effectively forming 3D nanosheets by T-nTP, using Si master molds with a low aspect ratio (A/R ≤ 1). In addition, we explain how to obtain a 3D wavy structure when using a mold with high A/R (≥ 3), based on the isotropic deposition process. We also produced a highly ordered 3D Au nanosheet on flexible PET over a large area (> 15 µm). We expect that this T-nTP approach using various Si mold shapes will be applied for the useful fabrication of various metal/oxide nanostructured devices with high surface area.

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3