On a conjecture of Dobrinen and Simpson concerning almost everywhere domination

Author:

Binns Stephen,Kjos-Hanssen Bjørn,Lerman Manuel,Solomon Reed

Abstract

Dobrinen and Simpson [4] introduced the notions of almost everywhere domination and uniform almost everywhere domination to study recursion theoretic analogues of results in set theory concerning domination in generic extensions of transitive models of ZFC and to study regularity properties of the Lebesgue measure on 2ω in reverse mathematics. In this article, we examine one of their conjectures concerning these notions.Throughout this article, ≤T denotes Turing reducibility and μ denotes the Lebesgue (or “fair coin”) probability measure on 2ω given byA property holds almost everywhere or for almost all X ∈ 2ω if it holds on a set of measure 1. For f, gωω, f dominatesg if ∃mn < m(f(n) > g(n)).(Dobrinen, Simpson). A set A ∈ 2ωis almost everywhere (a.e.) dominating if for almost all X ∈ 2ω and all functions gTX, there is a function fTA such that f dominates g. A is uniformly almost everywhere (u.a.e.) dominating if there is a function fTA such that for almost all X ∈ 2ω and all functions gTX, f dominates g.There are several trivial but useful observations to make about these definitions. First, although these properties are stated for sets, they are also properties of Turing degrees. That is, a set is (u.)a.e. dominating if and only if every other set of the same degree is (u.)a.e. dominating. Second, both properties are closed upwards in the Turing degrees. Third, u.a.e. domination implies a.e. domination. Finally, if A is u.a.e. dominating, then there is a function fTA which dominates every computable function.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference20 articles.

1. Degrees of members of Π10classes

2. Downey R. , Hirschfeldt D.R. , Miller J. , and Nies A. , Relativizing Chaitin's halting probability, submitted.

3. Schwarz S. , Index sets of recursively enumerable sets, quotient lattices, and recursive linear orderings, Ph.D. thesis, University of Chicago, 1982.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coarse computability, the density metric, Hausdorff distances between Turing degrees, perfect trees, and reverse mathematics;Journal of Mathematical Logic;2023-04-12

2. Canonical immunity and genericity;Fundamenta Mathematicae;2021

3. Genericity for Mathias forcing over general Turing ideals;Israel Journal of Mathematics;2016-10

4. Generics for computable Mathias forcing;Annals of Pure and Applied Logic;2014-09

5. Tracing and domination in the Turing degrees;Annals of Pure and Applied Logic;2012-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3