Author:
Kołodziejczyk Leszek Aleksander
Abstract
AbstractThe paper discusses the notion of finite model truth definitions (or FM-truth definitions), introduced by M. Mostowski as a finite model analogue of Tarski's classical notion of truth definition.We compare FM-truth definitions with Vardi's concept of the combined complexity of logics, noting an important difference: the difficulty of defining FM-truth for a logic does not depend on the syntax of , as long as it is decidable. It follows that for a natural there exist FM-truth definitions whose evaluation is much easier than the combined complexly of would suggest.We apply the general theory to give a complexity-theoretical characterization of the logics for which the classes (prenex classes of higher order logics) define FM-truth. For any d ≥ 2, m ≥ 1 we construct a family of syntactically defined fragments of which satisfy this characterization. We also use the classes to give a refinement of known results on the complexity classes captured by .We close with a few simple corollaries, one of which gives a sufficient condition for the existence, given a vocabulary σ, of a fixed number k such that model checking for all first order sentences over σ can be done in deterministic time nk.
Publisher
Cambridge University Press (CUP)
Reference19 articles.
1. Zdanowski K. , Arithmetics in finite hut potentially infinite worlds, Ph. D. Thesis , Warsaw University, in preparation.
2. The polynomial-time hierarchy
3. Decision Problems in Predicate Logic
4. Generalized first-order spectra and polynomial-time recognizable sets;Fagin;Complexity of Computation, S1AM-AMS Proceedings,1974
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献