Collateral impacts of pandemic COVID-19 drive the nosocomial spread of antibiotic resistance: A modelling study

Author:

Smith David R. M.ORCID,Shirreff GeorgeORCID,Temime LauraORCID,Opatowski Lulla

Abstract

Background Circulation of multidrug-resistant bacteria (MRB) in healthcare facilities is a major public health problem. These settings have been greatly impacted by the Coronavirus Disease 2019 (COVID-19) pandemic, notably due to surges in COVID-19 caseloads and the implementation of infection control measures. We sought to evaluate how such collateral impacts of COVID-19 impacted the nosocomial spread of MRB in an early pandemic context. Methods and findings We developed a mathematical model in which Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and MRB cocirculate among patients and staff in a theoretical hospital population. Responses to COVID-19 were captured mechanistically via a range of parameters that reflect impacts of SARS-CoV-2 outbreaks on factors relevant for pathogen transmission. COVID-19 responses include both “policy responses” willingly enacted to limit SARS-CoV-2 transmission (e.g., universal masking, patient lockdown, and reinforced hand hygiene) and “caseload responses” unwillingly resulting from surges in COVID-19 caseloads (e.g., abandonment of antibiotic stewardship, disorganization of infection control programmes, and extended length of stay for COVID-19 patients). We conducted 2 main sets of model simulations, in which we quantified impacts of SARS-CoV-2 outbreaks on MRB colonization incidence and antibiotic resistance rates (the share of colonization due to antibiotic-resistant versus antibiotic-sensitive strains). The first set of simulations represents diverse MRB and nosocomial environments, accounting for high levels of heterogeneity across bacterial parameters (e.g., rates of transmission, antibiotic sensitivity, and colonization prevalence among newly admitted patients) and hospital parameters (e.g., rates of interindividual contact, antibiotic exposure, and patient admission/discharge). On average, COVID-19 control policies coincided with MRB prevention, including 28.2% [95% uncertainty interval: 2.5%, 60.2%] fewer incident cases of patient MRB colonization. Conversely, surges in COVID-19 caseloads favoured MRB transmission, resulting in a 13.8% [−3.5%, 77.0%] increase in colonization incidence and a 10.4% [0.2%, 46.9%] increase in antibiotic resistance rates in the absence of concomitant COVID-19 control policies. When COVID-19 policy responses and caseload responses were combined, MRB colonization incidence decreased by 24.2% [−7.8%, 59.3%], while resistance rates increased by 2.9% [−5.4%, 23.2%]. Impacts of COVID-19 responses varied across patients and staff and their respective routes of pathogen acquisition. The second set of simulations was tailored to specific hospital wards and nosocomial bacteria (methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase producing Escherichia coli). Consequences of nosocomial SARS-CoV-2 outbreaks were found to be highly context specific, with impacts depending on the specific ward and bacteria evaluated. In particular, SARS-CoV-2 outbreaks significantly impacted patient MRB colonization only in settings with high underlying risk of bacterial transmission. Yet across settings and species, antibiotic resistance burden was reduced in facilities with timelier implementation of effective COVID-19 control policies. Conclusions Our model suggests that surges in nosocomial SARS-CoV-2 transmission generate selection for the spread of antibiotic-resistant bacteria. Timely implementation of efficient COVID-19 control measures thus has 2-fold benefits, preventing the transmission of both SARS-CoV-2 and MRB, and highlighting antibiotic resistance control as a collateral benefit of pandemic preparedness.

Funder

Fondation de France

Université Paris-Saclay

Agence Nationale de la Recherche

Canadian Institutes of Health Research

Publisher

Public Library of Science (PLoS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3