Abstract
Predation mortality can influence the distribution and abundance of fish populations. While predation is often assessed using direct observations of prey consumption, potential predation can be predicted from co-occurring predator and prey densities under varying environmental conditions. Juvenile Pacific salmon Oncorhynchus spp. (i.e., smolts) from the Columbia River Basin experience elevated mortality during the transition from estuarine to ocean habitat, but a thorough understanding of the role of predation remains incomplete. We used a Holling type II functional response to estimate smolt predation risk based on observations of piscivorous seabirds (sooty shearwater [Ardenna griseus] and common murre [Uria aalge]) and local densities of alternative prey fish including northern anchovy (Engraulis mordax) in Oregon and Washington coastal waters during May and June 2010–2012. We evaluated predation risk relative to the availability of alternative prey and physical factors including turbidity and Columbia River plume area, and compared risk to returns of adult salmon. Seabirds and smolts consistently co-occurred at sampling stations throughout most of the study area (mean = 0.79 ± 0.41, SD), indicating that juvenile salmon are regularly exposed to avian predators during early marine residence. Predation risk for juvenile coho (Oncorhynchus kisutch), yearling Chinook salmon (O. tshawytscha), and subyearling Chinook salmon was on average 70% lower when alternative prey were present. Predation risk was greater in turbid waters, and decreased as water clarity increased. Juvenile coho and yearling Chinook salmon predation risk was lower when river plume surface areas were greater than 15,000 km2, while the opposite was estimated for subyearling Chinook salmon. These results suggest that plume area, turbidity, and forage fish abundance near the mouth of the Columbia River, all of which are influenced by river discharge, are useful indicators of potential juvenile salmon mortality that could inform salmonid management.
Funder
Bonneville Power Administration
Publisher
Public Library of Science (PLoS)
Reference103 articles.
1. Northwest Fisheries Science Center. Status review update for Pacific salmon and steelhead listed under the Endangered Species Act: Pacific Northwest. 2015 [cited 24 Jun 2019]. Available: https://www.nwfsc.noaa.gov/assets/11/8623_03072016_124156_Ford-NWSalmonBioStatusReviewUpdate-Dec%2021-2015%20v2.pdf
2. A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change.;RJ Beamish;Prog Oceanogr,2001
3. Colony size and diet composition of piscivorous waterbirds on the lower Columbia River: Implications for losses of juvenile salmonids to avian predation.;K Collis;Trans Am Fish Soc.,2002
4. Summer-time use of west coast US National Marine Sanctuaries by migrating sooty shearwaters (Puffinus griseus).;J Adams;Biol Conserv,2012
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献