Supportive consensus

Author:

Palomares A.ORCID,Rebollo M.,Carrascosa C.

Abstract

The paper is concerned with the consensus problem in a multi-agent system such that each agent has boundary constraints. Classical Olfati-Saber’s consensus algorithm converges to the same value of the consensus variable, and all the agents reach the same value. These algorithms find an equality solution. However, what happens when this equality solution is out of the range of some of the agents? In this case, this solution is not adequate for the proposed problem. In this paper, we propose a new kind of algorithms called supportive consensus where some agents of the network can compensate for the lack of capacity of other agents to reach the average value, and so obtain an acceptable solution for the proposed problem. Supportive consensus finds an equity solution. In the rest of the paper, we define the supportive consensus, analyze and demonstrate the network’s capacity to compensate out of boundaries agents, propose different supportive consensus algorithms, and finally, provide some simulations to show the performance of the proposed algorithms.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. Consensus Problems in Networks of Agents with Switching Topology and Time-Delays;R Olfati-Saber;IEEE TAC,2004

2. Consensus and Cooperation in Networked Multi-Agent Systems;R Olfati-Saber;Proceedings of the IEEE,2007

3. On dynamic consensus processes in group decision making problems;IJ Pérez;Information Sciences,2018

4. Social preferences, beliefs, and the dynamics of free riding in public goods experiments;U Fischbacher;American economic review,2010

5. Production optimization considering environmental performance and preference in the cap-and-trade system;S Du;Journal of Cleaner Production,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Consensus-Based Learning for MAS: Definition, Implementation and Integration in IVEs;International Journal of Interactive Multimedia and Artificial Intelligence;2023

2. Co-Learning: Consensus-based Learning for Multi-Agent Systems;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3