Repetitive in vivo manual loading of the spine elicits cellular responses in porcine annuli fibrosi

Author:

Matyas John RobertORCID,Klein Claudia,Ponjevic Dragana,Duncan Neil A.,Kawchuk Gregory N.

Abstract

Back pain and intervertebral disc degeneration are prevalent, costly, and widely treated by manual therapies, yet the underlying causes of these diseases are indeterminate as are the scientific bases for such treatments. The present studies characterize the effects of repetitive in vivo manual loads on porcine intervertebral disc cell metabolism using RNA deep sequencing. A single session of repetitive manual loading applied to the lumbar spine induced both up- and down-regulation of a variety of genes transcribed by cells in the ventral annuli fibrosi. The effect of manual therapy at the level of loading was greater than at a level distant to the applied load. Gene ontology and molecular pathway analyses categorized biological, molecular, and cellular functions influenced by repetitive manual loading, with over-representation of membrane, transmembrane, and pericellular activities. Weighted Gene Co-expression Network Analysis discerned enrichment in genes in pathways of inflammation and skeletogenesis. The present studies support previous findings of intervertebral disc cell mechanotransduction, and are the first to report comprehensively on the repertoire of gene targets influenced by mechanical loads associated with manual therapy interventions. The present study defines the cellular response of repeated, low-amplitude loads on normal healthy annuli fibrosi and lays the foundation for future work defining how healthy and diseased intervertebral discs respond to single or low-frequency manual loads typical of those applied clinically.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3