Abstract
To obtain market average return, investment managers need to construct index tracking portfolio to replicate target index. Currently, most literatures use financial data that has homogenous frequency when constructing the index tracking portfolio. To make up for this limitation, we propose a methodology based on mixed-frequency financial data, called FACTOR-MIDAS-POET model. The proposed model can utilize the intraday return data, daily risk factors data and monthly or quarterly macro economy data, simultaneously. Meanwhile, the out-of-sample analysis demonstrates that our model can improve the tracking accuracy.
Funder
National Natural Science Foundation of China
Innovation Project Research Fund of SHUFE
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献