Abstract
With the continuous improvement of automation and informatization, the electromagnetic environment has become increasingly complex. Traditional protection methods for electronic systems are facing with serious challenges. Biological nervous system has the self-adaptive advantages under the regulation of the nervous system. It is necessary to explore a new thought on electromagnetic protection by drawing from the self-adaptive advantage of the biological nervous system. In this study, the scale-free spiking neural network (SFSNN) is constructed, in which the Izhikevich neuron model is employed as a node, and the synaptic plasticity model including excitatory and inhibitory synapses is employed as an edge. Under white Gaussian noise, the noise suppression abilities of the SFSNNs with the high average clustering coefficient (ACC) and the SFSNNs with the low ACC are studied comparatively. The noise suppression mechanism of the SFSNN is explored. The experiment results demonstrate that the following. (1) The SFSNN has a certain degree of noise suppression ability, and the SFSNNs with the high ACC have higher noise suppression performance than the SFSNNs with the low ACC. (2) The neural information processing of the SFSNN is the linkage effect of dynamic changes in neuron firing, synaptic weight and topological characteristics. (3) The synaptic plasticity is the intrinsic factor of the noise suppression ability of the SFSNN.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Publisher
Public Library of Science (PLoS)
Reference43 articles.
1. Electromagnetic interference in the current era of cardiac implantable electronic devices designed for magnetic resonance environment;V Ribatti;G Ital Cardiol,2017
2. Modeling and analyzing interference signal in a complex electromagnetic environment;CT Liu;EURASIP J. Wirel. Commun. Netw,2016
3. Highly efficient and reliable transparent electromagnetic interference shielding film;LC Jia;ACS Appl. Mater. Interfaces,2018
4. Shielding methods and products against man-made electromagnetic fields: protection versus risk;DJ Panagopoulos;Sci. Total Environ,2019
5. Fault and error tolerance in neural net-works: A review;CT Huitzil;IEEE Access,2017
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献