Short- and long-term memory of moving amoeboid cells

Author:

van Haastert Peter J. M.ORCID

Abstract

Amoeboid cells constantly change shape and extend protrusions. The direction of movement is not random, but is correlated with the direction of movement in the preceding minutes. The basis of this correlation is an underlying memory of direction. The presence of memory in movement is known for many decades, but its molecular mechanism is still largely unknown. This study reports in detail on the information content of directional memory, the kinetics of learning and forgetting this information, and the molecular basis for memory using Dictyostelium mutants. Two types of memory were characterized. A short-term memory stores for ~20 seconds the position of the last pseudopod using a local modification of the branched F-actin inducer SCAR/WAVE, which enhances one new pseudopod to be formed at the position of the previous pseudopod. A long term memory stores for ~2 minutes the activity of the last ~10 pseudopods using a cGMP-binding protein that induces myosin filaments in the rear of the cell; this inhibits pseudopods in the rear and thereby enhances pseudopods in the global front. Similar types of memory were identified in human neutrophils and mesenchymal stem cells, the protist Dictyostelium and the fungus B.d. chytrid. The synergy of short- and long-term memory explains their role in persistent movement for enhanced cell dispersal, food seeking and chemotaxis.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference56 articles.

1. Cellular motility driven by assembly and disassembly of actin filaments;T.D. Pollard;Cell,2003

2. Random walk with persistence and external bias;C.S. Patlak;Bull. Math. Biophys,1953

3. The ordered extension of pseudopodia by amoeboid cells in the absence of external cues;L. Bosgraaf;PLoS One,2009

4. The locomotion of mouse fibroblasts in tissue culture;M.H. Gail;Biophys. J,1970

5. Preaggregative cell motion in Dictyostelium;M.J. Potel;J. Cell Sci,1979

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3