Prioritizing investments in rapid response vaccine technologies for emerging infections: A portfolio decision analysis

Author:

Gouglas DimitriosORCID,Marsh Kevin

Abstract

This study reports on the application of a Portfolio Decision Analysis (PDA) to support investment decisions of a non-profit funder of vaccine technology platform development for rapid response to emerging infections. A value framework was constructed via document reviews and stakeholder consultations. Probability of Success (PoS) data was obtained for 16 platform projects through expert assessments and stakeholder portfolio preferences via a Discrete Choice Experiment (DCE). The structure of preferences and the uncertainties in project PoS suggested a non-linear, stochastic value maximization problem. A simulation-optimization algorithm was employed, identifying optimal portfolios under different budget constraints. Stochastic dominance of the optimization solution was tested via mean-variance and mean-Gini statistics, and its robustness via rank probability analysis in a Monte Carlo simulation. Project PoS estimates were low and substantially overlapping. The DCE identified decreasing rates of return to investing in single platform types. Optimal portfolio solutions reflected this non-linearity of platform preferences along an efficiency frontier and diverged from a model simply ranking projects by PoS-to-Cost, despite significant revisions to project PoS estimates during the review process in relation to the conduct of the DCE. Large confidence intervals associated with optimization solutions suggested significant uncertainty in portfolio valuations. Mean-variance and Mean-Gini tests suggested optimal portfolios with higher expected values were also accompanied by higher risks of not achieving those values despite stochastic dominance of the optimal portfolio solution under the decision maker’s budget constraint. This portfolio was also the highest ranked portfolio in the simulation; though having only a 54% probability of being preferred to the second-ranked portfolio. The analysis illustrates how optimization modelling can help health R&D decision makers identify optimal portfolios in the face of significant decision uncertainty involving portfolio trade-offs. However, in light of such extreme uncertainty, further due diligence and ongoing updating of performance is needed on highly risky projects as well as data on decision makers’ portfolio risk attitude before PDA can conclude about optimal and robust solutions.

Funder

Research Council of Norway

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference70 articles.

1. CEPI. Coalition for Epidemic Preparedness Innovations preliminary business plan 2017–2021. 2016. [Cited 2019 16 December]. Available from: http://cepi.net/sites/default/files/CEPI%20Preliminary%20Business%20Plan%20061216.pdf.

2. New Vaccines against Epidemic Infectious Diseases;JA Røttingen;N Engl J Med,2017

3. CEPI: Driving Progress Towards Epidemic Preparedness And Response.;D Gouglas;Epidemiol Rev,2019

4. Setting Strategic Objectives for the Coalition of Epidemic Preparedness Innovations: An Exploratory Decision Analysis Process.;D Gouglas;INFORMS J. Appl. Anal.,2019

5. CEPI. Platform technologies to enable rapid vaccine development for epidemic prone infections. [Cited 2019 16 December]. Available from: https://cepi.net/get_involved/cfps/.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3