When gravity is not where it should be: How perceived orientation affects visual self-motion processing

Author:

McManus MeaghanORCID,Harris Laurence R.ORCID

Abstract

Human perception is based on expectations. We expect visual upright and gravity upright, sensed through vision, vestibular and other sensory systems, to agree. Equally, we expect that visual and vestibular information about self-motion will correspond. What happens when these assumptions are violated? Tilting a person from upright so that gravity is not where it should be impacts both visually induced self-motion (vection) and the perception of upright. How might the two be connected? Using virtual reality, we varied the strength of visual orientation cues, and hence the probability of participants experiencing a visual reorientation illusion (VRI) in which visual cues to orientation dominate gravity, using an oriented corridor and a starfield while also varying head-on-trunk orientation and body posture. The effectiveness of the optic flow in simulating self-motion was assessed by how much visual motion was required to evoke the perception that the participant had reached the position of a previously presented target. VRI was assessed by questionnaire When participants reported higher levels of VRI they also required less visual motion to evoke the sense of traveling through a given distance, regardless of head or body posture, or the type of visual environment. We conclude that experiencing a VRI, in which visual-vestibular conflict is resolved and the direction of upright is reinterpreted, affects the effectiveness of optic flow at simulating motion through the environment. Therefore, any apparent effect of head or body posture or type of environment are largely indirect effects related instead, to the level of VRI experienced by the observer. We discuss potential mechanisms for this such as reinterpreting gravity information or altering the weighting of orientation cues.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Canadian Space Agency

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference53 articles.

1. Visual influence on the magnitude of somatogravic illusion evoked on advanced spatial disorientation demonstrator;O Tokumaru;Aviat Sp Environ Med,1998

2. Postural strategies associated with somatosensory and vestibular loss;FB Horak;Exp Brain Res,1990

3. The effect of gravity on gastric emptying with various test meals;JN Hunt;J Physiol,1965

4. A new solution to the problem of the subjective vertical;H. Mittelstaedt;Naturwissenschaften,1983

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3