Ridge regression and its applications in genetic studies

Author:

Arashi M.,Roozbeh M.ORCID,Hamzah N. A.,Gasparini M.

Abstract

With the advancement of technology, analysis of large-scale data of gene expression is feasible and has become very popular in the era of machine learning. This paper develops an improved ridge approach for the genome regression modeling. When multicollinearity exists in the data set with outliers, we consider a robust ridge estimator, namely the rank ridge regression estimator, for parameter estimation and prediction. On the other hand, the efficiency of the rank ridge regression estimator is highly dependent on the ridge parameter. In general, it is difficult to provide a satisfactory answer about the selection for the ridge parameter. Because of the good properties of generalized cross validation (GCV) and its simplicity, we use it to choose the optimum value of the ridge parameter. The GCV function creates a balance between the precision of the estimators and the bias caused by the ridge estimation. It behaves like an improved estimator of risk and can be used when the number of explanatory variables is larger than the sample size in high-dimensional problems. Finally, some numerical illustrations are given to support our findings.

Funder

Universiti Malaya

South Africa SARChI Research Chair

Iran National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference24 articles.

1. RNA expression analysis using an antisense Bacillus subtilis genome array;JM Lee;J. Bacteriology,2001

2. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis;N Zamboni;Biotechnology and Bioengineering,2005

3. Regression shrinkage and selection via the Lasso;R Tibshirani;J. Royal Statist. Soc. Ser. B,1996

4. Variable selection via nonconcave penalized likelihood and its oracle properties;J Fan;J. Amer. Statist. Assoc,2001

5. Nearly unbiased variable selection under minimax concave penalty;CH Zhang;Ann. Statist,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3