Abstract
The survival of viruses in droplets is known to depend on droplets’ chemical composition, which may vary in respiratory fluid between individuals and over the course of disease. This relationship is also important for understanding the persistence of viruses in droplets generated from wastewater, freshwater, and seawater. We investigated the effects of salt (0, 1, and 35 g/L), protein (0, 100, and 1000 μg/mL), surfactant (0, 1, and 10 μg/mL), and droplet pH (4.0, 7.0, and 10.0) on the viability of viruses in 1-μL droplets pipetted onto polystyrene surfaces and exposed to 20%, 50%, and 80% relative humidity (RH) using a culture-based approach. Results showed that viability of MS2, a non-enveloped virus, was generally higher than that of Φ6, an enveloped virus, in droplets after 1 hour. The chemical composition of droplets greatly influenced virus viability. Specifically, the survival of MS2 was similar in droplets at different pH values, but the viability of Φ6 was significantly reduced in acidic and basic droplets compared to neutral ones. The presence of bovine serum albumin protected both MS2 and Φ6 from inactivation in droplets. The effects of sodium chloride and the surfactant sodium dodecyl sulfate varied by virus type and RH. Meanwhile, RH affected the viability of viruses as shown previously: viability was lowest at intermediate to high RH. The results demonstrate that the viability of viruses is determined by the chemical composition of carrier droplets, especially pH and protein content, and environmental factors. These findings emphasize the importance of understanding the chemical composition of carrier droplets in order to predict the persistence of viruses contained in them.
Funder
National Institutes of Health
National Science Foundation
Publisher
Public Library of Science (PLoS)
Reference76 articles.
1. World Health Organization Geneva. Global health estimates 2016: deaths by cause, age, sex, by country and by region, 2000–2016. 2018.
2. Environmental persistence and transfer of enteric viruses;G Kotwal;Curr Opin Virol,2014
3. Survival of enteric viruses on environmental fomites;FX Abad;Appl Environ Microbiol,1994
4. Evaluation of Phi6 persistence and suitability as an enveloped virus surrogate;N Aquino De Carvalho;Environ Sci Technol,2017
5. Persistence of Ebola virus in sterilized wastewater;K Bibby;Environ Sci Technol Lett,2015
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献