Abstract
The estimation of the entropy of a random system or process is of interest in many scientific applications. The aim of this article is the analysis of the entropy of the famous Kumaraswamy distribution, an aspect which has not been the subject of particular attention previously as surprising as it may seem. With this in mind, six different entropy measures are considered and expressed analytically via the beta function. A numerical study is performed to discuss the behavior of these measures. Subsequently, we investigate their estimation through a semi-parametric approach combining the obtained expressions and the maximum likelihood estimation approach. Maximum likelihood estimates for the considered entropy measures are thus derived. The convergence properties of these estimates are proved through a simulated data, showing their numerical efficiency. Concrete applications to two real data sets are provided.
Funder
Researchers Supporting Project
Publisher
Public Library of Science (PLoS)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献