A new analysis method for evaluating bacterial growth with microplate readers

Author:

Krishnamurthi Venkata Rao,Niyonshuti Isabelle I.,Chen Jingyi,Wang Yong

Abstract

Growth curve measurements are commonly used in microbiology, while the use of microplate readers for such measurements provides better temporal resolution and higher throughput. However, evaluating bacterial growth with microplate readers has been hurdled by barriers such as multiple scattering. Here, we report our development of a method based on the time derivatives of the optical density (OD) and/or fluorescence (FL) of bacterial cultures to overcome these barriers. First, we illustrated our method using quantitative models and numerical simulations, which predicted the number of bacteria and the number of fluorescent proteins in time as well as their time derivatives. Then, we systematically investigated how the time derivatives depend on the parameters in the models/simulations, providing a framework for understanding the FL growth curves. In addition, as a demonstration, we applied our method to study the lag time elongation of bacteria subjected to treatment with silver (Ag+) ions and found that the results from our method corroborated well with that from growth curve fitting by the Gompertz model that has been commonly used in the literature. Furthermore, this method was applied to the growth of bacteria in the presence of silver nanoparticles (AgNPs) at various concentrations, where the OD curve measurements failed. We showed that our method allowed us to successfully extract the growth behavior of the bacteria from the FL measurements and understand how the growth was affected by the AgNPs.

Funder

Arkansas Biosciences Institute

National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3