Stimbiotic supplementation improved performance and reduced inflammatory response via stimulating fiber fermenting microbiome in weaner pigs housed in a poor sanitary environment and fed an antibiotic-free low zinc oxide diet

Author:

Cho Hyun Min,González-Ortiz GemmaORCID,Melo-Durán Diego,Heo Jung Min,Cordero Gustavo,Bedford Michael R.ORCID,Kim Jae CheolORCID

Abstract

This study investigated whether the inclusion of a stimbiotic (STB) can improve performance, influence intestinal microbiota and fermentation activity, and reduce pro-inflammatory cytokines in piglets fed a low zinc oxide diet without antimicrobial growth promotors compared to fructo-oligosaccharide (FOS) and mannan-oligosaccharide (MOS) when housed either in good sanitary (GS) or poor sanitary (PS) environments. One hundred forty-four male pigs (28-day-old) were sorted by initial body weight (BW) and allocated to one of six experimental treatments: 1) GS environment without any additive (GS-CTR); 2) GS environment with 0.01% stimbiotic (GS-STB); 3) PS environment (without cleaning and disinfection of a previously populated room) without any additive (PS-CTR); 4) PS environment with 0.01% STB (PS-STB); 5) PS environment with 0.1% MOS (PS-MOS); and 6) PS environment with 0.2% FOS (PS-FOS). Each treatment had six replicates, with four animals each. Three feeding phases, based on corn, wheat, and soybean meal were available ad libitum for the 42-days of the study. Housing piglets under PS conditions negatively influenced performance, increased plasma tumor necrosis factor alpha (TNF-α), affected the fecal microbial populations and increased concentrations of branched-chain fatty acids (BCFA) compared to GS. Stimbiotic improved 42-d-BW under PS conditions (P < 0.05) whereas MOS or FOS had no effect. On d35, plasma TNF-α was reduced with STB in PS (P < 0.05). The ratio between VFA:BCFA increased (P < 0.05) with STB, MOS or FOS in PS, and under GS condition, STB also increased the ratio. Stimbiotic increased the proportion of Clostridiales Family XIII Incertae Sedis and Clostridiaceae, while MOS and FOS increased Selenomonadaceae, Catabacteriaceae and Fibrobacteraceae. These results indicate that STB shifted the intestinal microbiome to favor fiber fermentation which likely contributed to reduced inflammatory response and improved performance, particularly in piglets reared in PS conditions.

Funder

AB Vista

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3