The impact of genetic background and sex on the phenotype of IL-23 induced murine spondyloarthritis

Author:

Haley Emma K.,Matmusaev Mederbek,Hossain Imtiyaz N.,Davin Sean,Martin Tammy M.,Ermann JoergORCID

Abstract

Background Overexpression of IL-23 in adult mice by means of hydrodynamic tail vein injection of IL-23 minicircles has been reported to result in spondyloarthritis-like disease. The impact of genetic background and sex on the disease phenotype in this model has not been investigated. Methods We compared male B10.RIII mice with male C57BL/6 mice, and male with female B10.RIII mice after hydrodynamic injection of IL-23 enhanced episomal vector (EEV) at 8–12 weeks of age. We monitored clinical arthritis scores, paw swelling, and body weight. Animals were euthanized after two weeks and tissues were harvested for histology, flow cytometry and gene expression analysis. Serum cytokine levels were determined by ELISA. Findings Male B10.RIII mice developed arthritis in the forepaws and feet within 6 days after IL-23 EEV injection; they also exhibited psoriasis-like skin disease, colitis, weight loss, and osteopenia. In contrast to previous reports, we did not observe spondylitis or uveitis. Male C57BL/6 mice injected with IL-23 EEV had serum IL-23 levels comparable with B10.RIII mice and developed skin inflammation, colitis, weight loss, and osteopenia but failed to develop arthritis. Female B10.RIII mice had more severe arthritis than male B10.RIII mice but did not lose weight. Conclusions The phenotype of IL-23 induced disease in mice is controlled by genetic background and sex of the animals. The development of extra-articular manifestations but absence of arthritis in C57BL/6 mice suggests that organ-specificity of IL-23 driven inflammation is genetically determined. The mechanisms behind the strain-specific differences and the sexual dimorphism observed in this study may be relevant for human spondyloarthritis and warrant further exploration.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Rheumatology Research Foundation

Innovation Evergreen Fund

Research to Prevent Blindness

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3