Contemporary and relic waters strongly decoupled in arid alpine environments

Author:

Moran Brendan J.ORCID,Boutt David F.ORCID,Munk Lee AnnORCID,Fisher Joshua D.ORCID

Abstract

Deciphering the dominant controls on the connections between groundwater, surface water, and climate is critical to understanding water cycles in arid environments. Yet, persistent uncertainties in the fundamental hydrology of these systems remain. The growing demand for critical minerals such as lithium and associated water demands in the arid environments in which they often occur has amplified the urgency to address these uncertainties. We present an integrated hydrological analysis of the Dry Andes region utilizing a uniquely comprehensive set of tracer data (3H, 18O/2H) for these environments, paired directly with physical hydrological observations. We find two strongly decoupled hydrological systems that interact only under specific hydrogeological conditions where preferential conduits exist. The primary conditions creating these conduits are laterally extensive fine-grained evaporite and/or lacustrine units and perennial flowing streams connected with regional groundwater discharge sites. The efficient capture and transport of modern or “contemporary” water (weeks to years old) within these conduits is the primary control of the interplay between modern hydroclimate variations and groundwater aquifers in these environments. Modern waters account for a small portion of basin budgets but are critical to sustaining surface waters due to the existence of these conduits. As a result, surface waters near basin floors are disproportionally sensitive to short-term climate and anthropogenic perturbations. The framework we present describes a new understanding of the dominant controls on natural water cycles intrinsic to these arid high-elevation systems that will improve our ability to manage critical water resources.

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3