Spatiotemporal trends in particle-associated microbial communities in a chlorinated drinking water distribution system

Author:

Ferrebee Madison,Osborne Erika,Garner EmilyORCID

Abstract

Various spatiotemporal, hydraulic, and water quality parameters can affect the microbial community composition of water within drinking water distribution systems (DWDSs). Although some relationships between various paravmeters and microbial growth are known, the effects of spatial and temporal trends on particle-associated microbial communities in chlorinated DWDSs remain poorly understood. The objectives of this study were to characterize the microbial community composition of both particle-associated bacteria (PAB) and total bacteria (TB) within a full-scale chlorinated DWDS, and assess relationships between microbiavvl community and various spatiotemporal, hydraulic, and water quality parameters. Bulk water samples were collected from the treatment plant, a storage tank, and 12 other sites in a rural chlorinated DWDS at varying distances from the treatment plant on four sampling dates spanning six months. Amplicon sequencing targeting the 16S rRNA gene was performed to characterize the microbial community. Gammaproteobacteria dominated the DWDS, and hydraulic parameters were well-correlated with differences in microbial communities between sites. Results indicate that hydraulic changes may have led to the detachment of biofilms and loose deposits, subsequently affecting the microbial community composition at each site. Spatial variations in microbial community were stronger than temporal variations, differing from similar studies and indicating that the highly varied hydraulic conditions within this system may intensify spatial variations. Genera containing pathogenic species were detected, with Legionella and Pseudomonas detected at every site at least once and Mycobacterium detected at most sites. However, only one sample had quantifiable Pseudomonas aeruginosa through quantitative polymerase chain reaction (qPCR), and no samples had quantifiable Legionella pneumophila or Mycobacterium avium, indicating a low human health risk. This study establishes spatial variations in PAB associated with varied hydraulic conditions as an important factor driving microbial community within a chlorinated DWDS.

Funder

West Virginia University

National Science Foundation

Publisher

Public Library of Science (PLoS)

Reference75 articles.

1. Emerging investigators series: Microbial communities in full-scale drinking water distribution systems-a meta-analysis.;QM Bautista-De los Santos;Environmental Science: Water Research and Technology.,2016

2. Disinfection exhibits systematic impacts on the drinking water microbiome.;Z Dai;Microbiome,2020

3. Identification of factors affecting bacterial abundance and community structures in a full-scale chlorinated drinking water distribution system.;VCF Dias;Water (Switzerland).,2019

4. Longitudinal and Source-to-Tap New Orleans, LA, U.S.A. Drinking Water Microbiology;NM Hull;Environmental Science and Technology,2017

5. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing.;Y Chao;Sci Rep.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3