Spatial and seasonal variation in disinfection byproducts concentrations in a rural public drinking water system: A case study of Martin County, Kentucky, USA

Author:

Unrine Jason M.ORCID,McCoy Nina,Christian W. Jay,Gautam Yogesh,Ormsbee Lindell,Sanderson Wayne,Draper Ricki,Mooney Madison,Cromer Mary,Pennell Kelly,Hoover Anna G.ORCID

Abstract

To increase our understanding of the factors that influence formation of disinfection byproducts (DBPs) in rural drinking systems, we investigated the spatial and seasonal variation in trihalomethane (THM) and haloacetic acid (HAA) concentrations in relation to various chemical and physical variables in a rural public drinking water system in Martin County, Kentucky, USA. We collected drinking water samples from 97 individual homes over the course of one year and analyzed them for temperature, electrical conductivity, pH, free chlorine, total chlorine, THMs (chloroform, bromodichloromethane, dibromochloromethane, dichlorobromomethane, and bromoform) and HAAs (monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, bromoacetic acid, and dibromoacetic acid). Spatial autocorrelation analysis showed only weak overall clustering for HAA concentrations and none for THMs. The relationship between modeled water age and TTHM or HAA5 concentrations varied seasonally. In contrast, there was strong variation for both HAA and THMs, with concentrations of HAA peaking in mid-summer and THMs peaking in early fall. Multiple regression analysis revealed that THM concentrations were strongly correlated with conductivity, while HAA concentrations were more strongly correlated with water temperature. Individual DBP species that only contained chlorine halogen groups were strongly correlated with temperature, while compounds containing bromine were more strongly correlated with conductivity. Further investigation revealed that increased drinking water conductivity associated with low discharge of the Tug Fork River, the source water, is highly correlated with increased concentrations of bromide. Discharge and conductivity of the Tug Fork River changed dramatically through the year contributing to a seasonal peak in bromide concentrations in the late summer and early fall and appeared to be a driver of brominated THM concentrations. Brominated DBPs tend to have higher toxicity than DBPs containing only chlorine, therefore this study provides important insight into the seasonal factors driving risk from exposure to DBPs in rural drinking water systems impacted by bromide.

Funder

National Institute of Environmental Health Sciences

National Institute of Food and Agriculture

Publisher

Public Library of Science (PLoS)

Reference59 articles.

1. ASCE. 2021 Report card for America’s infrastructure. American Society of Civil Engineers, 2021.

2. Drinking water infrastructure and environmental disparities: evidence and methodological considerations;J. VanDerslice;Am J Public Health,2011

3. National trends in drinking water quality violations;M Allaire;Proceedings of the National Academy of Sciences,2018

4. USEPA. Report on the environment. Washington, D.C.: 2016.

5. Models for predicting disinfection byproduct (DBP) formation in drinking waters: A chronological review;S Chowdhury;Science of the Total Environment,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3