Multiple Criteria Optimization (MCO): A gene selection deterministic tool in RStudio

Author:

Narváez-Bandera Isis,Suárez-Gómez Deiver,Isaza Clara E.,Cabrera-Ríos MauricioORCID

Abstract

Identifying genes with the largest expression changes (gene selection) to characterize a given condition is a popular first step to drive exploration into molecular mechanisms and is, therefore, paramount for therapeutic development. Reproducibility in the sciences makes it necessary to emphasize objectivity and systematic repeatability in biological and informatics analyses, including gene selection. With these two characteristics in mind, in previous works our research team has proposed using multiple criteria optimization (MCO) in gene selection to analyze microarray datasets. The result of this effort is the MCO algorithm, which selects genes with the largest expression changes without user manipulation of neither informatics nor statistical parameters. Furthermore, the user is not required to choose either a preference structure among multiple measures or a predetermined quantity of genes to be deemed significant a priori. This implies that using the same datasets and performance measures (PMs), the method will converge to the same set of selected differentially expressed genes (repeatability) despite who carries out the analysis (objectivity). The present work describes the development of an open-source tool in RStudio to enable both: (1) individual analysis of single datasets with two or three PMs and (2) meta-analysis with up to five microarray datasets, using one PM from each dataset. The capabilities afforded by the code include license-free portability and the possibility to carry out analyses via modest computer hardware, such as personal laptops. The code provides affordable, repeatable, and objective detection of differentially expressed genes from microarrays. It can be used to analyze other experiments with similar experimental comparative layouts, such as microRNA arrays and protein arrays, among others. As a demonstration of the capabilities of the code, the analysis of four publicly-available microarray datasets related to Parkinson´s Disease (PD) is presented here, treating each dataset individually or as a four-way meta-analysis. These MCO-supported analyses made it possible to identify MMP9 and TUBB2A as potential PD genetic biomarkers based on their persistent appearance across each of the case studies. A literature search confirmed the importance of these genes in PD and indeed as PD biomarkers, which evidences the code´s potential.

Funder

National Institute on Minority Health and Health Disparities

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3