Radiomics for identifying lung adenocarcinomas with predominant lepidic growth manifesting as large pure ground-glass nodules on CT images

Author:

Xiong Ziqi,Jiang Yining,Tian Di,Zhang Jingyu,Guo Yan,Li Guosheng,Qin Dongxue,Li ZhiyongORCID

Abstract

Purpose To explore the value of radiomics in the identification of lung adenocarcinomas with predominant lepidic growth in pure ground-glass nodules (pGGNs) larger than 10 mm. Methods We retrospectively analyzed CT images of 204 patients with large pGGNs (≥ 10 mm) pathologically diagnosed as minimally invasive adenocarcinomas (MIAs), lepidic predominant adenocarcinomas (LPAs), and non-lepidic predominant adenocarcinomas (NLPAs). All pGGNs in the two groups (MIA/LPA and NLPA) were randomly divided into training and test cohorts. Forty-seven patients from another center formed the external validation cohort. Baseline features, including clinical data and CT morphological and quantitative parameters, were collected to establish a baseline model. The radiomics model was built with the optimal radiomics features. The combined model was developed using the rad_score and independent baseline predictors. The performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC) and compared using the DeLong test. The differential diagnosis performance of the models was compared with three radiologists (with 20+, 10+, and 3 years of experience) in the test cohort. Results The radiomics (training AUC: 0.833; test AUC: 0.804; and external validation AUC: 0.792) and combined (AUC: 0.849, 0.820, and 0.775, respectively) models performed better for discriminating than the baseline model (AUC: 0.756, 0.762, and 0.725, respectively) developed by tumor location and mean CT value of the whole nodule. The DeLong test showed that the AUCs of the combined and radiomics models were significantly increased in the training cohort. The highest AUC value of the radiologists was 0.600. Conclusion The application of CT radiomics improved the identification performance of lung adenocarcinomas with predominant lepidic growth appearing as pGGNs larger than 10 mm.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3