O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 modulate seizure susceptibility in C. elegans

Author:

Suthakaran NirthiecaORCID,Wiggins Jonathan,Giles Andrew,Opperman Karla J.,Grill Brock,Dawson-Scully Ken

Abstract

Neurodevelopmental disorders such as epilepsy and autism have been linked to an imbalance of excitation and inhibition (E/I) in the central nervous system. The simplicity and tractability of C. elegans allows our electroconvulsive seizure (ES) assay to be used as a behavioral readout of the locomotor circuit and neuronal function. C. elegans possess conserved nervous system features such as gamma-aminobutyric acid (GABA) and GABA receptors in inhibitory neurotransmission, and acetylcholine (Ach) and acetylcholine receptors in excitatory neurotransmission. Our previously published data has shown that decreasing inhibition in the motor circuit, via GABAergic manipulation, will extend the time of locomotor recovery following electroshock. Similarly, mutations in a HECT E3 ubiquitin ligase called EEL-1 leads to impaired GABAergic transmission, E/I imbalance and altered sensitivity to electroshock. Mutations in the human ortholog of EEL-1, called HUWE1, are associated with both syndromic and non-syndromic intellectual disability. Both EEL-1 and its previously established binding protein, OGT-1, are expressed in GABAergic motor neurons, localize to GABAergic presynaptic terminals, and function in parallel to regulate GABA neuron function. In this study, we tested behavioral responses to electroshock in wildtype, ogt-1, eel-1 and ogt-1; eel-1 double mutants. Both ogt-1 and eel-1 null mutants have decreased inhibitory GABAergic neuron function and increased electroshock sensitivity. Consistent with EEL-1 and OGT-1 functioning in parallel pathways, ogt-1; eel-1 double mutants showed enhanced electroshock susceptibility. Expression of OGT-1 in the C. elegans nervous system rescued enhanced electroshock defects in ogt-1; eel-1 double mutants. Application of a GABA agonist, Baclofen, decreased electroshock susceptibility in all animals. Our C. elegans electroconvulsive seizure assay was the first to model a human X-linked Intellectual Disability (XLID) associated with epilepsy and suggests a potential novel role for the OGT-1/EEL-1 complex in seizure susceptibility.

Funder

National Institute of Mental Health

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference65 articles.

1. A complex containing the O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 regulates GABA neuron function;A.C. Giles;J Biol Chem,2019

2. A cellular and regulatory map of the GABAergic nervous system of C. elegans;M. Gendrel;Elife,2016

3. Introduction to genetics and genomics;J. Hodgkin;WormBook,2005

4. Analysis of protein domain families in Caenorhabditis elegans;E.L. Sonnhammer;Genomics,1997

5. Neuropeptides Function in a Homeostatic Manner to Modulate Excitation-Inhibition Imbalance in C. elegans;T.M. Stawicki;PLOS Genetics,2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3