VEGF receptor heterodimers and homodimers are differentially expressed in neuronal and endothelial cell types

Author:

Sarkar JoyORCID,Luo Yuncin,Zhou Qiang,Ivakhnitskaia Evguenia,Lara Daniel,Katz Eitan,Sun Michael G.,Guaiquil Victor,Rosenblatt MarkORCID

Abstract

Purpose We have previously reported that VEGF-B is more potent than VEGF-A in mediating corneal nerve growth in vitro and in vivo, and this stimulation of nerve growth appears to be different from stimulation of angiogenesis by these same ligands, at least in part due to differences in VEGF receptor activation. VEGF signaling may be modulated by a number of factors including receptor number or the formation of receptor hetero- vs. homodimers. In endothelial cells, VEGF receptor heterodimer (VEGR1/R2) activation after ligand binding and subsequent phosphorylation alters the activation of downstream signaling cascades. However, our understanding of these processes in neuronal cell types remains unclear. The purpose of this study was to identify the presence and distribution of VEGF Receptor-Ligand interactions in neuronal cells as compared to endothelial cells. Methods PC12 (rat neuronal cell line), MAEC (mouse aortic endothelial cell line), MVEC (mouse venous endothelial cell line) and HUVEC (human umbilical venous endothelial cell line; control group) were used. Cells were acutely stimulated either with VEGF-A (50 ng/μL) or VEGF-B (50 ng/μL) or “vehicle” (PBS; control group). We also isolated mouse trigeminal ganglion cells from thy1-YFP neurofluorescent mice. After treatment, cells were used as follows: (i) One group was fixed in 4% paraformaldehyde and processed for VEGFR1 and VEGFR2 immunostaining and visualized using confocal fluorescence microscopy and Total Internal Reflection (TIRF) microscopy; (ii) the second group was harvested in cell lysis buffer (containing anti-protease / anti-phosphatase cocktail), lysed and processed for immunoprecipitation (IP; Thermo Fisher IP kit) and immunoblotting (IB; LI-COR® Systems). Immunoprecipitated proteins were probed either with anti-VEGFR1 or anti-VEGFR2 IgG antibodies to evaluate VEGFR1-R2-heterodimerization; (iii) a third group of cells was also processed for Duolink Proximity Ligation Assay (PLA; Sigma) to assess the presence and distribution of VEGF-receptor homo- and heterodimers in neuronal and endothelial cells. Results TIRF and fluorescence confocal microscopy revealed the presence of VEGFR1 co-localized with VEGFR2 in endothelial and PC12 neuronal cells. Cell lysates immunoprecipitated with anti-VEGFR1 further validated the existence of VEGFR1-R2 heterodimers in PC12 neuronal cells. Neuronal cells showed higher levels of VEGFR1-R2 heterodimers as compared to endothelial cells whereas endothelial cells showed higher VEGFR2-R2 homodimers compared to neuronal cells as demonstrated by Duolink PLA. Levels of VEGFR1-R1 homodimers were very low in neuronal and endothelial cells. Conclusions Differences in VEGF Receptor homo- and heterodimer distribution may explain the differential role of VEGF ligands in neuronal versus endothelial cell types. This may in turn influence VEGF activity and regulation of neuronal cell homeostasis.

Funder

National Eye Institute

Research to Prevent Blindness

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3