Efficiency of antioxidant Avenanthramide-C on high-dose methotrexate-induced ototoxicity in mice

Author:

Umugire Alphonse,Choi Youngmi,Lee Sungsu,Cho Hyong-HoORCID

Abstract

Methotrexate (MTX) has been used in treating various types of cancers but can also cause damage to normal organs and cell types. Folinic acid (FA) is a well-known MTX antidote that protects against toxicity caused by the drug and has been used for decades. Since hearing loss caused by MTX treatment is not well studied, herein we aimed to investigate the efficiency of the antioxidant Avenanthramide-C (AVN-C) on high-dose MTX (HDMTX) toxicity in the ear and provide insights into the possible mechanism involved in MTX-induced hearing loss in normal adult C57Bl/6 mice and HEI-OC1 cells. Our results show that the levels of MTX increased in the serum and perilymph 30 minutes after systemic administration. MTX increased hearing thresholds in mice, whereas AVN-C and FA preserved hearing within the normal range. MTX also caused a decrease in wave I amplitude, while AVN-C and FA maintained it at higher levels. MTX considerably damaged the cochlear synapses and neuronal integrity, and both AVN-C and FA rescued the synapses. MTX reduced the cell viability and increased the reactive oxygen species (ROS) level in HEI-OC1 cells, but AVN-C and FA reversed these changes. Apoptosis- and ROS-related genes were significantly upregulated in MTX-treated HEI-OC1 cells; however, they were downregulated by AVN-C and FA treatment. We show that MTX can cause severe hearing loss; it can cross the blood–labyrinth barrier and cause damage to the cochlear neurons and outer hair cells (OHCs). The antioxidant AVN-C exerts a strong protective effect against MTX-induced ototoxicity and preserved the inner ear structures (synapses, neurons, and OHCs) from MTX-induced damage. The mechanism of AVN-C against MTX suggests that ROS is involved in HDMTX-induced ototoxicity.

Funder

Ministry of Education, Science and Technology, Korea

Chonnam National University Hospital Biomedical Research Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference48 articles.

1. Overview of Dual-Acting Drug Methotrexate in Different Neurological Diseases, Autoimmune Pathologies and Cancers;P Kozminski;Int J Mol Sci,2020

2. Drug-induced hepatotoxicity: clinical and biochemical features of 26 patients and a review of the literature;M Mengoli;Recenti Prog Med,2011

3. Preventing and managing toxicities of high-dose methotrexate;SC Howard;The oncologist,2016

4. Methotrexate therapy of metastatic choriocarcinoma;JF Holland;American journal of obstetrics and gynecology,1958

5. The anti-inflammatory actions of methotrexate are critically dependent upon the production of reactive oxygen species;DC Phillips;British journal of pharmacology,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3