A framework for mutational signature analysis based on DNA shape parameters

Author:

Karolak AleksandraORCID,Levatić JuricaORCID,Supek FranORCID

Abstract

The mutation risk of a DNA locus depends on its oligonucleotide context. In turn, mutability of oligonucleotides varies across individuals, due to exposure to mutagenic agents or due to variable efficiency and/or accuracy of DNA repair. Such variability is captured by mutational signatures, a mathematical construct obtained by a deconvolution of mutation frequency spectra across individuals. There is a need to enhance methods for inferring mutational signatures to make better use of sparse mutation data (e.g., resulting from exome sequencing of cancers), to facilitate insight into underlying biological mechanisms, and to provide more accurate mutation rate baselines for inferring positive and negative selection. We propose a conceptualization of mutational signatures that represents oligonucleotides via descriptors of DNA conformation: base pair, base pair step, and minor groove width parameters. We demonstrate how such DNA structural parameters can accurately predict mutation occurrence due to DNA repair failures or due to exposure to diverse mutagens such as radiation, chemical exposure, and the APOBEC cytosine deaminase enzymes. Furthermore, the mutation frequency of DNA oligomers classed by structural features can accurately capture systematic variability in mutagenesis of >1,000 tumors originating from diverse human tissues. A nonnegative matrix factorization was applied to mutation spectra stratified by DNA structural features, thereby extracting novel mutational signatures. Moreover, many of the known trinucleotide signatures were associated with an additional spectrum in the DNA structural descriptor space, which may aid interpretation and provide mechanistic insight. Overall, we suggest that the power of DNA sequence motif-based mutational signature analysis can be enhanced by drawing on DNA shape features.

Funder

European Research Council

H2020 Marie Skłodowska-Curie Actions

Ministerio de Ciencia, Innovación y Universidades

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference70 articles.

1. The repertoire of mutational signatures in human cancer;L. B. Alexandrov;Nature,2020

2. Signatures of mutational processes in human cancer;L. B. Alexandrov;Nature,2013

3. The emerging clinical relevance of genomics in cancer medicine;M. F. Berger;Nature Reviews Clinical Oncology,2018

4. Therapeutic options for peritoneal metastasis arising from colorectal cancer;G. Glockzin;World J. Gastrointest. Pharmacol. Ther.,2016

5. Whole genome sequencing analysis for cancer genomics and precision medicine;H. Nakagawa;Cancer Science,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3