Laminin N-terminus α31 is upregulated in invasive ductal breast cancer and changes the mode of tumour invasion

Author:

Troughton Lee D.ORCID,O’Loughlin Danielle A.ORCID,Zech Tobias,Hamill Kevin J.

Abstract

Laminin N-terminus α31 (LaNt α31) is an alternative splice isoform derived from the laminin α3 gene. The LaNt α31 protein is enriched around the terminal duct lobular units in normal breast tissue. In the skin and cornea the protein influences epithelial cell migration and tissue remodelling. However, LaNt α31 has never been investigated in a tumour environment. Here we analysed LaNt α31 in invasive ductal carcinoma and determined its contribution to breast carcinoma invasion. LaNt α31 expression and distribution were analysed by immunohistochemistry in human breast tissue biopsy sections and tissue microarrays covering 232 breast cancer samples. This analysis revealed LaNt α31 to be upregulated in 56% of invasive ductal carcinoma specimens compared with matched normal tissue, and further increased in nodal metastasis compared with the tumour mass in 45% of samples. 65.8% of triple negative cases displayed medium to high LaNt α31 expression. To study LaNt α31 function, an adenoviral system was used to induce expression in MCF-7 and MDA-MB-231 cells. 2D cell migration and invasion into collagen hydrogels were not significantly different between LaNt α31 overexpressing cells and control treated cells. However, LaNt α31 overexpression reduced the proliferation rate of MCF-7 and MDA-MB-231 cells. Moreover, LaNt α31 overexpressing MDA-MB-231 cells displayed a striking change in their mode of invasion into laminin-containing Matrigel; changing from multicellular streaming to individual cellular-invasion. In agreement with these results, 66.7% of the tumours with the highest LaNt α31 expression were non-cohesive. Together these findings indicate that breast cancer-associated changes in LaNt α31 expression could contribute to the processes involved in tumour invasion and may represent a new therapeutic target.

Funder

Biotechnology and Biological Sciences Research Council

Northwest cancer research

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3