Abstract
Recently, a novel electroencephalogram-based brain-computer interface (EVE-BCI) using the vibrotactile stimulus shows great potential for an alternative to other typical motor imagery and visual-based ones. (i) Objective: in this review, crucial aspects of EVE-BCI are extracted from the literature to summarize its key factors, investigate the synthetic evidence of feasibility, and generate recommendations for further studies. (ii) Method: five major databases were searched for relevant publications. Multiple key concepts of EVE-BCI, including data collection, stimulation paradigm, vibrotactile control, EEG signal processing, and reported performance, were derived from each eligible article. We then analyzed these concepts to reach our objective. (iii) Results: (a) seventy-nine studies are eligible for inclusion; (b) EEG data are mostly collected among healthy people with an embodiment of EEG cap in EVE-BCI development; (c) P300 and Steady-State Somatosensory Evoked Potential are the two most popular paradigms; (d) only locations of vibration are heavily explored by previous researchers, while other vibrating factors draw little interest. (e) temporal features of EEG signal are usually extracted and used as the input to linear predictive models for EVE-BCI setup; (f) subject-dependent and offline evaluations remain popular assessments of EVE-BCI performance; (g) accuracies of EVE-BCI are significantly higher than chance levels among different populations. (iv) Significance: we summarize trends and gaps in the current EVE-BCI by identifying influential factors. A comprehensive overview of EVE-BCI can be quickly gained by reading this review. We also provide recommendations for the EVE-BCI design and formulate a checklist for a clear presentation of the research work. They are useful references for researchers to develop a more sophisticated and practical EVE-BCI in future studies.
Funder
Hong Kong Research Grants Council
Publisher
Public Library of Science (PLoS)
Reference134 articles.
1. Developing a Novel Tactile P300 Brain-Computer Interface With a Cheeks-Stim Paradigm;J Jin;IEEE Transactions on Biomedical Engineering,2020
2. A comparison of classification techniques for the P300 Speller.;DJ Krusienski;Journal of neural engineering,2006
3. Age-Related Changes in Vibro-Tactile EEG Response and Its Implications in BCI Applications: A Comparison between Older and Younger Populations;ML Chen;IEEE Transactions on Neural Systems and Rehabilitation Engineering,2019
4. Neurofeedback Treatment Study for ADHD by Using the Brain-Computer Interface Neurofeedback System;LIU Tian;Chinese journal of biomedical engineering,2018
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献