Similarity of eyes in a cataractous population—How reliable is the biometry of the fellow eye for lens power calculation?

Author:

Langenbucher AchimORCID,Szentmáry Nóra,Cayless Alan,Röggla Veronika,Leydolt Christina,Wendelstein JaschaORCID,Hoffmann Peter

Abstract

Background In some situations it is necessary to use biometry from the fellow eye for lens power calculation prior to cataract surgery. The purpose of this study was to analyse the lateral differences in biometric measurements and their impact on the lens power calculation. Methods The analysis was based on a large dataset of 19,472 measurements of 9736 patients prior to cataract surgery with complete biometric data of both left and right eyes extracted from the IOLMaster 700. After randomly indexing the left or right eye as primary (P) and secondary (S), the differences between S and P eye were recorded and analysed (Keratometry (RSEQ), total keratometry (TRSEQ) and back surface power (BRSEQ)), axial length AL, corneal thickness CCT, anterior chamber depth ACD, lens thickness LT). Lens power was calculated with the Castrop formula for all P and S eyes, and the refraction was predicted using both the P and S eye biometry for the lens power calculation. Results Lateral differences (S-P, 90% confidence interval) ranged between -0.64 to 0.63 dpt / -0.67 to 0.66 dpt / -0.12 to 0.12 dpt for RSEQ / TRSEQ / BRSEQ. The respective difference in AL / CCT / ACD / LT ranged between -0.46 to 0.43 mm / -0.01 to 0.01 mm / -0.20 to 0.20 mm / -0.13 to 0.14 mm. The resulting difference in lens power and predicted refraction ranged between -2.02 to 2.00 dpt and -1.36 to 1.30 dpt where the biometry of the S eye is used instead of the P eye. The AL and RSEQ were identified as the most critical parameters where the biometry of the fellow eye is used. Conclusion Despite a strong similarity of both eyes, intraocular lens power calculation with fellow eye biometry could yield different results for the lens power and finally for the predicted refraction. In 10% of cases, the lens power derived from the S eye deviates by 2 dpt or more, resulting in a refraction deviation of 1.36 dpt or more.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference20 articles.

1. Interocular biometric parameters comparison measured with swept-source technology.;C Albarrán-Diego;Int Ophthalmol.,2021

2. Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer;YA Chen;J Cataract Refract Surg,2011

3. Can we use the fellow eye biometric data to predict IOL power?;M De Bernardo;Semin Ophthalmol.,2017

4. Comparison of two swept-source optical coherence tomography-based biometry devices.;AD Fișuș;J Cataract Refract Surg,2020

5. Repeatability of two swept-source optical coherence tomography biometers and one optical low coherence reflectometry biometer.;AD Fișuș;J Cataract Refract Surg,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3