An improved poor and rich optimization algorithm

Author:

Wang Yanjiao,Zhou ShengnanORCID

Abstract

The poor and rich optimization algorithm (PRO) is a new bio-inspired meta-heuristic algorithm based on the behavior of the poor and the rich. PRO suffers from low convergence speed and premature convergence, and easily traps in the local optimum, when solving very complex function optimization problems. To overcome these limitations, this study proposes an improved poor and rich optimization (IPRO) algorithm. First, to meet the requirements of convergence speed and swarm diversity requirements across different evolutionary stages of the algorithm, the population is dynamically divided into the poor and rich sub-population. Second, for the rich sub-population, this study designs a novel individual updating mechanism that learns from the evolution information of the global optimum individual and that of the poor sub-population simultaneously, to further accelerate convergence speed and minimize swarm diversity loss. Third, for the poor sub-population, this study designs a novel individual updating mechanism that improves some evolution information by learning alternately from the rich and Gauss distribution, gradually improves evolutionary genes, and maintains swarm diversity. The IPRO is then compared with four state-of-the-art swarm evolutionary algorithms with various characteristics on the CEC 2013 test suite. Experimental results demonstrate the competitive advantages of IPRO in convergence precision and speed when solving function optimization problems.

Funder

Project of Scientific and Technological Innovation Development of Jilin in China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3