Memory augmented recurrent neural networks for de-novo drug design

Author:

Suresh Naveen,Chinnakonda Ashok Kumar Neelesh,Subramanian Srikumar,Srinivasa GowriORCID

Abstract

A recurrent neural network (RNN) is a machine learning model that learns the relationship between elements of an input series, in addition to inferring a relationship between the data input to the model and target output. Memory augmentation allows the RNN to learn the interrelationships between elements of the input over a protracted length of the input series. Inspired by the success of stack augmented RNN (StackRNN) to generate strings for various applications, we present two memory augmented RNN-based architectures: the Neural Turing Machine (NTM) and the Differentiable Neural Computer (DNC) for the de-novo generation of small molecules. We trained a character-level convolutional neural network (CNN) to predict the properties of a generated string and compute a reward or loss in a deep reinforcement learning setup to bias the Generator to produce molecules with the desired property. Further, we compare the performance of these architectures to gain insight to their relative merits in terms of the validity and novelty of the generated molecules and the degree of property bias towards the computational generation of de-novo drugs. We also compare the performance of these architectures with simpler recurrent neural networks (Vanilla RNN, LSTM, and GRU) without an external memory component to explore the impact of augmented memory in the task of de-novo generation of small molecules.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference45 articles.

1. Innovation in the pharmaceutical industry: New estimates of R&D costs;JA DiMasi;Journal of Health Economics,2016

2. Transforming Computational Drug Discovery with Machine Learning and AI;JS Smith;ACS Medicinal Chemistry Letters,2018

3. Computational methods in drug discovery;SP Leelananda;Beilstein Journal of Organic Chemistry,2016

4. Drug Repurposing Using Deep Embeddings of Gene Expression Profiles;Y Donner;Molecular Pharmaceutics,2018

5. Deep Learning in Drug Discovery;E Gawehn;Molecular Informatics,2015

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3