Abstract
At present, the global demand for lithium batteries is still in a high growth state, and the traditional lithium battery pole mill control system is still dominated by ARM (Artificial Intelligence Enhanced Computing), DSP (Digital Signal Processing), and other single-chip control methods. There are problems such as poor anti-interference ability and insufficient real-time online analysis of production data. This paper adopts the dual-chip control system architecture based on "ARM+DSP", starting from the mechanical characteristics and operating signal features of the pole mill. The hardware system adopts a three-unit joint control hardware structure, which separates the control unit from the data processing unit and improves the operation of the system. The software system adopts fuzzy PID algorithm to realize deflection control and tension control, and verifies that the Fuzzy PID (Proportion Integration Differentiation) control algorithm can effectively improve the anti-interference ability of the deflection system and tension system. The results show that the data loss rate is low with the SPI communication between DSP and ARM. The tension error of the "ARM+DSP" control system does not exceed 5%, and the deviation of the correction band is within ±4mm. The dedicated dual-chip hardware architecture effectively improves the robustness and operation efficiency of the pole mill, solves the problem of low tension control accuracy, and provides a theoretical basis for the application of the dual-roll mill.
Publisher
Public Library of Science (PLoS)
Reference49 articles.
1. Analysis and research on the status quo of standardization of lithium-ion battery manufacturing equipment;K Wu X;New Material Industry,2020
2. Lithium battery recycling in Australia: defining the status and identifying opportunities for the development of a new industry;Sarah King;Journal of Cleaner Production,2019
3. Probabilistic assessment of the impact of electric vehicles and nonlinear loads on power quality in residential networks;B Pablo;International Journal of Electrical Power & Energy Systems,2021
4. Potential impact of the end-of-life batteries recycling of electric vehicles on lithium demand in China: 2010–2050;D Qiao;Sci Total Environ,2021
5. Design of control system for power lithium-ion battery pole piece rolling mill based on STM32;Y Song D;Instrument Technology and Sensors,2020
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献