Optimized design of battery pole control system based on dual-chip architecture

Author:

Xiao YanjunORCID,Deng Shuhan,Liu Weiling,Zhou Wei,Wan Feng

Abstract

At present, the global demand for lithium batteries is still in a high growth state, and the traditional lithium battery pole mill control system is still dominated by ARM (Artificial Intelligence Enhanced Computing), DSP (Digital Signal Processing), and other single-chip control methods. There are problems such as poor anti-interference ability and insufficient real-time online analysis of production data. This paper adopts the dual-chip control system architecture based on "ARM+DSP", starting from the mechanical characteristics and operating signal features of the pole mill. The hardware system adopts a three-unit joint control hardware structure, which separates the control unit from the data processing unit and improves the operation of the system. The software system adopts fuzzy PID algorithm to realize deflection control and tension control, and verifies that the Fuzzy PID (Proportion Integration Differentiation) control algorithm can effectively improve the anti-interference ability of the deflection system and tension system. The results show that the data loss rate is low with the SPI communication between DSP and ARM. The tension error of the "ARM+DSP" control system does not exceed 5%, and the deviation of the correction band is within ±4mm. The dedicated dual-chip hardware architecture effectively improves the robustness and operation efficiency of the pole mill, solves the problem of low tension control accuracy, and provides a theoretical basis for the application of the dual-roll mill.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference49 articles.

1. Analysis and research on the status quo of standardization of lithium-ion battery manufacturing equipment;K Wu X;New Material Industry,2020

2. Lithium battery recycling in Australia: defining the status and identifying opportunities for the development of a new industry;Sarah King;Journal of Cleaner Production,2019

3. Probabilistic assessment of the impact of electric vehicles and nonlinear loads on power quality in residential networks;B Pablo;International Journal of Electrical Power & Energy Systems,2021

4. Potential impact of the end-of-life batteries recycling of electric vehicles on lithium demand in China: 2010–2050;D Qiao;Sci Total Environ,2021

5. Design of control system for power lithium-ion battery pole piece rolling mill based on STM32;Y Song D;Instrument Technology and Sensors,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3