Higher-order structure of DNA determines its positioning in cell-size droplets under crowded conditions

Author:

Nishio Takashi,Yoshikawa Yuko,Yoshikawa KenichiORCID

Abstract

Background It is becoming clearer that living cells use water/water (w/w) phase separation to form membraneless organelles that exhibit various important biological functions. Currently, it is believed that the specific localization of biomacromolecules, including DNA, RNA and proteins in w/w microdroplets is closely related to their bio-activity. Despite the importance of this possible role of micro segregation, our understanding of the underlying physico-chemical mechanism is still unrefined. Further research to unveil the underlying mechanism of the localization of macromolecules in relation to their steric conformation in w/w microdroplets is needed. Principal findings Single-DNA observation of genome-size DNA (T4 GT7 bacteriophage DNA; 166kbp) by fluorescence microscopy revealed that DNAs are spontaneously incorporated into w/w microdroplets generated in a binary aqueous polymer solution with polyethylene glycol (PEG) and dextran (DEX). Interestingly, DNAs with elongated coil and shrunken conformations exhibit Brownian fluctuation inside the droplet. On the other hand, tightly packed compact globules, as well as assemblies of multiple condensed DNAs, tend to be located near the interface in the droplet. Conclusion and significance The specific localization of DNA molecules depending on their higher-order structure occurs in w/w microdroplet phase-separation solution under a binary aqueous polymer solution. Such an aqueous solution with polymers mimics the crowded conditions in living cells, where aqueous macromolecules exist at a level of 30–40 weight %. The specific positioning of DNA depending on its higher-order structure in w/w microdroplets is expected to provide novel insights into the mechanism and function of membraneless organelles and micro-segregated particles in living cells.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3