Volumetric assessment and longitudinal changes of subcortical structures in formalinized Beagle brains

Author:

Del Signore FrancescaORCID,Arribarat Germain,Della Salda LeonardoORCID,Mogicato GiovanniORCID,Deviers AlexandraORCID,Cartiaux Benjamin,Vignoli Massimo,Peran Patrice,de Pasquale Francesco

Abstract

High field MRI is an advanced technique for diagnostic and research purposes on animal models, such as the Beagle dog. In this context, studies on neuroscience applications, e.g. aging and neuro-pathologies, are currently increasing. This led to a need for reference values, in terms of volumetric assessment, for the structures typically involved. Nowadays, several canine brain MRI atlases have been provided. However, no reports are available regarding the measurements’ reproducibility and little is known about the effect of formalin on MRI segmentation. Here, we assessed the segmentation variability of selected structures among operators (two operators segmented the same data) in a sample of 11 Beagle dogs. Then, we analyzed, for one Beagle dog, the longitudinal volumetric changes of these structures. We considered four conditions: in vivo, post mortem (after euthanasia), ex vivo (brain extracted and studied after 1 month in formalin, and after 12 months). The MRI data were collected with a 3 T scanner. Our findings suggest that the segmentation procedure was overall reproducible since only slight statistical differences were detected. In the post mortem/ ex vivo comparison, most structures showed a higher contrast, thereby leading to greater reproducibility between operators. We observed a net increase in the volume of the studied structures. This could be justified by the intrinsic relaxation time changes observed because of the formalin fixation. This led to an improvement in brain structure visualization and segmentation. To conclude, MRI-based segmentation seems to be a useful and accurate tool that allows longitudinal studies on formalin-fixed brains.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3