Low frequency weak electric fields can induce structural changes in water

Author:

Rad ImanORCID,Stahlberg Rainer,Kung Kurt,Pollack Gerald H.

Abstract

Low frequency electric fields were exposed to various water samples using platinum electrodes mounted near the water surface. Responses were monitored using a spectro-radiometer and a contact-angle goniometer. Treatment of DI (deionized), EZ (Exclusion Zone), and bulk water with certain electromagnetic frequencies resulted in a drop of radiance persisting for at least half an hour. Compared to DI water, however, samples of EZ and bulk water showed lesser radiance drop. Contact-angle goniometric results confirmed that when treated with alternating electric fields (E = 600 ± 150 V/m, f = 7.8 and 1000 Hz), droplets of EZ and bulk water acquired different charges. The applied electric field interacted with EZ water only when electrodes were installed above the chamber, but not beneath. Further, when DI water interacted with an electric field applied from above (E = 600 ± 150 V/m, f = 75 Hz), its radiance profile became similar to that of EZ water. Putting these last two findings together, one can say that application of an electric field on DI water from above (E = 600 ± 150 V/m, f = 7.8 to 75 Hz) may induce a molecular ordering in DI water similar to that of EZ water.

Funder

software ag foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. Cooling of Pure Water at Room Temperature by Weak Electric Currents;I Rad;The Journal of Physical Chemistry B,2018

2. Electronic transmission of antibacterial property into water at extremely low frequency range: A preliminary study;I Rad;The Journal of Alternative and Complementary Medicine,2018

3. Freezing transition of interfacial water at room temperature under electric fields;E-M Choi;Physical review letters,2005

4. Water Bridging Dynamics of Polymerase Chain Reaction in the Gauge Theory Paradigm of Quantum Fields.;L Montagnier;Water,2017

5. Raman spectroscopy and shadowgraph visualization of excess protons in high-voltage electrolysis of pure water;EC Fuchs,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3