Species-specific enamel differences in hardness and abrasion resistance between the permanent incisors of cattle (Bos primigenius taurus) and the ever-growing incisors of nutria (Myocastor coypus)

Author:

Fischer Valentin L.ORCID,Winkler Daniela E.,Głogowski RobertORCID,Attin Thomas,Hatt Jean-Michel,Clauss MarcusORCID,Wegehaupt Florian

Abstract

Hypselodont (ever-growing) teeth of lagomorphs or rodents have higher wear rates (of a magnitude of mm/week), with compensating growth rates, compared to the non-ever-growing teeth of ungulates (with a magnitude of mm/year). Whether this is due to a fundamental difference in enamel hardness has not been investigated so far. We prepared enamel samples (n = 120 per species) from incisors of cattle (Bos primigenius taurus) and nutria (Myocastor coypus, hypselodont incisors) taken at slaughterhouses, and submitted them to indentation hardness testing. Subsequently, samples were split into 4 groups per species (n = 24 per species and group) that were assessed for abrasion susceptibility by a standardized brush test with a control (no added abrasives) and three treatment groups (using fine silt at 4 ±1 μm particle size, volcanic ash at 96 ±9 μm, or fine sand at 166 ±15 μm as abrasives), in which enamel abrasion was quantified as height loss by before-and-after profilometry. The difference in enamel hardness between the species was highly significant, with nutria enamel achieving 78% of the hardness of cattle enamel. In the control and the fine sand group, no enamel height loss was evident, which was attributed to thein vitrosystem in the latter group, where the sand particles were brushed out of the test slurry by the brushes’ bristles. For fine silt and volcanic ash, nutria enamel significantly lost 3.65 and 3.52 times more height than cattle. These results suggest a relationship between enamel hardness and susceptibility to abrasion. However, neither the pattern within the species nor across the species indicated a monotonous relationship between hardness and height loss; rather, the difference was due to qualitative step related to species. Hence, additional factors not measured in this study must be responsible for the differences in the enamel’s susceptibility to abrasion. While thein vitrobrush system cannot be used to rank abrasive test substances in terms of their abrasiveness, it can differentiate abrasion susceptibility in dental tissue of different animal species. The results caution against considering enamel wear as a similar process across mammals.

Funder

European Union’s Horizon 2020 research and innovation program

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3