Mapping spatial distribution and geographic shifts of East African highland banana (Musa spp.) in Uganda

Author:

Ochola DennisORCID,Boekelo Bastiaen,van de Ven Gerrie W. J.,Taulya Godfrey,Kubiriba Jerome,van Asten Piet J. A.,Giller Ken E.

Abstract

East African highland banana (Musa acuminata genome group AAA-EA; hereafter referred to as banana) is critical for Uganda’s food supply, hence our aim to map current distribution and to understand changes in banana production areas over the past five decades. We collected banana presence/absence data through an online survey based on high-resolution satellite images and coupled this data with independent covariates as inputs for ensemble machine learning prediction of current banana distribution. We assessed geographic shifts of production areas using spatially explicit differences between the 1958 and 2016 banana distribution maps. The biophysical factors associated with banana spatial distribution and geographic shift were determined using a logistic regression model and classification and regression tree, respectively. Ensemble models were superior (AUC = 0.895; 0.907) compared to their constituent algorithms trained with 12 and 17 covariates, respectively: random forests (AUC = 0.883; 0.901), gradient boosting machines (AUC = 0.878; 0.903), and neural networks (AUC = 0.870; 0.890). The logistic regression model (AUC = 0.879) performance was similar to that for the ensemble model and its constituent algorithms. In 2016, banana cultivation was concentrated in the western (44%) and central (36%) regions, while only a small proportion was in the eastern (18%) and northern (2%) regions. About 60% of increased cultivation since 1958 was in the western region; 50% of decreased cultivation in the eastern region; and 44% of continued cultivation in the central region. Soil organic carbon, soil pH, annual precipitation, slope gradient, bulk density and blue reflectance were associated with increased banana cultivation while precipitation seasonality and mean annual temperature were associated with decreased banana cultivation over the past 50 years. The maps of spatial distribution and geographic shift of banana can support targeting of context-specific intensification options and policy advocacy to avert agriculture driven environmental degradation.

Funder

Bill and Melinda Gates Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference84 articles.

1. Agro-Ecological Intensification of Agricultural Systems in the African Highlands

2. Flowering time in banana (Musa spp.), a day neutral plant, is controlled by at least three FLOWERING LOCUS T homologues.;AK Chaurasia;Scientific reports,2017

3. Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model;A Lufafa;Agricultural systems,2003

4. FAOSTAT Statistical Database [Internet]. Food and Agriculture Organization of the United Nations [cited 12 October 2020]. http://www.fao.org/faostat/en/#data/QC.

5. nematode and weevil effects on yield and foliar nutrient status of banana in Uganda.;P Smithson;Nutrient Cycling in Agroecosystems,2001

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3