Abstract
Alzheimer’s disease (AD) affects the quality of life as it causes; memory loss, difficulty in thinking, learning, and performing familiar tasks. Resting-state functional magnetic resonance imaging (rs-fMRI) has been widely used to investigate and analyze different brain regions for AD identification. This study investigates the effectiveness of using correlated transfer function (CorrTF) as a new biomarker to extract the essential features from rs-fMRI, along with support vector machine (SVM) ordered hierarchically, in order to distinguish between the different AD stages. Additionally, we explored the regions, showing significant changes based on the CorrTF extracted features’ strength among different AD stages. First, the process was initialized by applying the preprocessing on rs-fMRI data samples to reduce noise and retain the essential information. Then, the automated anatomical labeling (AAL) atlas was employed to divide the brain into 116 regions, where the intensity time series was calculated, and the CorrTF features were extracted for each region. The proposed framework employed the SVM classifier in two different methodologies, hierarchical and flat multi-classification schemes, to differentiate between the different AD stages for early detection purposes. The ADNI rs-fMRI dataset, employed in this study, consists of 167, 102, 129, and 114 normal, early, late mild cognitive impairment (MCI), and AD subjects, respectively. The proposed schemes achieved an average accuracy of 98.2% and 95.5% for hierarchical and flat multi-classification tasks, respectively, calculated using ten folds cross-validation. Therefore, CorrTF is considered a promising biomarker for AD early-stage identification. Moreover, the significant changes in the strengths of CorrTF connections among the different AD stages can help us identify and explore the affected brain regions and their latent associations during the progression of AD.
Publisher
Public Library of Science (PLoS)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献