Accounting for detection probability with overestimation by integrating double monitoring programs over 40 years

Author:

Vallecillo DavidORCID,Guillemain MatthieuORCID,Authier Matthieu,Bouchard ColinORCID,Cohez Damien,Vialet Emmanuel,Massez Grégoire,Vandewalle Philippe,Champagnon Jocelyn

Abstract

In the context of wildlife population declines, increasing computer power over the last 20 years allowed wildlife managers to apply advanced statistical techniques that has improved population size estimates. However, respecting the assumptions of the models that consider the probability of detection, such asN-mixture models, requires the implementation of a rigorous monitoring protocol with several replicate survey occasions and no double counting that are hardly adaptable to field conditions. When the logistical, economic and ecological constraints are too strong to meet model assumptions, it may be possible to combine data from independent surveys into the modelling framework in order to understand population dynamics more reliably. Here, we present a state-space model with an error process modelled on the log scale to evaluate wintering waterfowl numbers in the Camargue, southern France, while taking a conditional probability of detection into consideration. Conditional probability of detection corresponds to estimation of a detection probability index, which is not a true probability of detection, but rather conditional on the difference to a particular baseline. The large number of sites (wetlands within the Camargue delta) and years monitored (44) provide significant information to combine both terrestrial and aerial surveys (which constituted spatially and temporally replicated counts) to estimate a conditional probability of detection, while accounting for false-positive counting errors and changes in observers over the study period. The model estimates abundance indices of wintering Common Teal, Mallard and Common Coot, all species abundant in the area. We found that raw counts were underestimated compared to the predicted population size. The model-based data integration approach as described here seems like a promising solution that takes advantage of as much as possible of the data collected from several methods when the logistic constraints do not allow the implementation of a permanent monitoring and analysis protocol that takes into account the detectability of individuals.

Funder

Fondation François Sommer

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3