Neuroprotective effect of sodium alginate against chromium-induced brain damage in rats

Author:

Saleh Eman M.,Hamdy Germine M.ORCID,Hassan Rasha E.

Abstract

Oral exposure to chromium hexavalent [Cr(VI)] has disastrous impacts and affects many people worldwide. Cr(VI) triggers neurotoxicity via its high oxidation potential by generating high amount of ROS. Meanwhile, alginates are known by their chelating activity and ability to bind heavy metals and toxins, in addition to their antioxidant, anti-inflammatory, and anti-apoptotic activities. So, this study aimed to explore the neuroprotective potential of sodium alginate (SA) against cellular injury, DNA damage, macromolecule alterations, and apoptosis induced by oral ingestion of Cr. Forty Wistar male rats were divided into 4 groups; group I: standard control ingested with the vehicle solution, group II: Cr-intoxicated group received 10 mg/kg b.w. of potassium dichromate orally by gavage and kept without treatment, group III: SA group in which rats were orally exposed to 200 mg/kg b.w. of SA only, and group IV: SA-treated group that received 200 mg/kg b.w. of SA along with Cr for 28 consecutive days. Neurotransmitters such as Acetyl choline esterase (AchE), Monoamine oxidase A (MAOA) concentrations, Dopamine (DA) and 5-Hydroxytryptamine (5-HT) levels were assessed in brain homogenate tissues. Neurobiochemical markers; NAD+ and S100B protein were investigated in the brain tissues and serum, respectively. Levels of HSP70, caspase-3, protein profiling were evaluated. DNA damage was determined using the Comet assay. Results revealed a significant reduction in the AchE and MAOA concentrations, DA, 5-HT, and NAD+ levels, with an increase in the S100B protein levels. Cr(VI) altered protein pattern and caused DNA damage. High levels of HSP70 and caspase-3 proteins were observed. Fortunately, oral administration of SA prevented the accumulation of Cr in brain homogenates and significantly improved all investigated parameters. SA attenuated the ROS production and relieved the oxidative stress by its active constituents. SA can protect against cellular and DNA damage and limit apoptosis. SA could be a promising neuroprotective agent against Cr(VI)-inducing toxicity.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference77 articles.

1. Amelioration of Chromium VI Toxicity in Sorghum (Sorghum bicolor L.) using Glycine Betaine;P Kumar;Sci Rep,2019

2. Mechanisms of chromium-induced toxicity;TL DesMarias;Current Opinion in Toxicology. Elsevier B.V.,2019

3. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic;M Balali-Mood;Frontiers in Pharmacology. Frontiers Media S.A.,2021

4. Heavy metal toxicity and the environment;PB Tchounwou;EXS,2012

5. Heavy metal pollution in the environment and their toxicological effects on humans;J Briffa;Heliyon. Elsevier Ltd,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3