Regression shrinkage and selection via least quantile shrinkage and selection operator

Author:

Daneshvar Alireza,Mousa GolalizadehORCID

Abstract

Over recent years, the state-of-the-art lasso and adaptive lasso have aquired remarkable consideration. Unlike the lasso technique, adaptive lasso welcomes the variables’ effects in penalty meanwhile specifying adaptive weights to penalize coefficients in a different manner. However, if the initial values presumed for the coefficients are less than one, the corresponding weights would be relatively large, leading to an increase in bias. To dominate such an impediment, a new class of weighted lasso will be introduced that employs all aspects of data. That is to say, signs and magnitudes of the initial coefficients will be taken into account simultaneously for proposing appropriate weights. To allocate a particular form to the suggested penalty, the new method will be nominated as ‘lqsso’, standing for the least quantile shrinkage and selection operator. In this paper, we demonstate that lqsso encompasses the oracle properties under certain mild conditions and delineate an efficient algorithm for the computation purpose. Simulation studies reveal the predominance of our proposed methodology when compared with other lasso methods from various aspects, particularly in ultra high-dimensional condition. Application of the proposed method is further underlined with real-world problem based on the rat eye dataset.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference22 articles.

1. Better subset regression using the nonnegative garrote;Leo Breiman;Technometrics,1995

2. Ridge regression: Biased estimation for nonorthogonal problems;AE Hoerl;Technometrics,1970

3. Regression shrinkage and selection via the lasso;R Tibshirani;Journal of the Royal Statistical Society. Series B (Methodological),1996

4. Regularization and variable selection via the elastic net;H Zou;Journal of the Royal Statistical Society: series B (Statistical Methodology),2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3